

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-X

Subject: Mathematics

Total : 8 Marks (expected) [MCQ(2+1)-1 Mark, SA-I(1)-2 Marks, SA-II(1)-3 Marks]

Chapter Name : *Introduction to Trigonometry* (Chap : 8)

Level - 1

MCQ Type :

1. If $x = r \sin \theta$ and $y = r \cos \theta$ then, the value of $x^2 + y^2$ is:

(A) r (B) r^2 (C) $\frac{1}{r}$ (D) 1

[Hints : square and add.]

2. If $3 \sec \theta - 5 = 0$ then, $\cot \theta$ is equal to:

(A) $\frac{5}{3}$ (B) $\frac{4}{5}$ (C) $\frac{3}{4}$ (D) $\frac{3}{5}$

[Hints : Find $\sec \theta$]

3. If $\theta = 45^\circ$ then, $\sec \theta \cot \theta - \operatorname{cosec} \theta \tan \theta$ is:

(A) 0 (B) 1 (C) $2\sqrt{2}$ (D) $\sqrt{2}$

[Hints : Use standard angle values]

4. $\frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$ can also be written as:

(A) $\cot \theta$ (B) $\sqrt{\sin \theta}$ (C) $\frac{\sin \theta}{\sqrt{\cos \theta}}$ (D) $\tan \theta$

[Hints : Use $1 - \sin^2 \theta = \cos^2 \theta$]

5. $\cot \theta + \tan \theta$ equals:

(A) $\operatorname{cosec} \theta \sec \theta$ (B) $\sin \theta \sec \theta$ (C) $\cos \theta \tan \theta$ (D) $\sin^2 \theta$

[Hints : Write $\cot \theta$ and $\tan \theta$ in terms $\sin \theta$ and $\cos \theta$]

6. If $\sin(A - B) = \frac{1}{2}$ and $\cos(A + B) = \frac{1}{2}$ then, A and B will be, respectively:

(A) $15^\circ, 45^\circ$ (B) $45^\circ, 15^\circ$ (C) $45^\circ, 45^\circ$ (D) $30^\circ, 60^\circ$

[Hints : $A - B = 30^\circ$, $A + B = 60^\circ$]

7. If $\sin \theta + \sin^2 \theta = 1$, then the value of $\cos^2 \theta + \cos^4 \theta$ will be:

(A) 1 (B) $2 \sin^2 \theta$ (C) $1 + 2 \sin^2 \theta$ (D) can't be determined

[Hints : Use $\sin^2 \theta + \cos^2 \theta = 1$]

8. The value of θ , for $\sin 2\theta = 1$, $0^\circ < \theta < 90^\circ$ is:

(A) 60° (B) 55° (C) 45° (D) 135°

[Hints : $\sin 90^\circ = 1$]

9. If $\cos \theta = \frac{1}{2}$, $\sin \beta = \frac{1}{2}$ then value of $\theta + \beta$:

(A) 30° (B) 60° (C) 90° (D) 120°

[Hints : Use standard angle]

10. $\frac{(1 + \tan^2 A)}{(1 + \cot^2 A)} = \text{_____} ?$

(A) $\sec^2 A$ (B) -1 (C) $\cot^2 A$ (D) $\tan^2 A$

[Hints : $\cot A = \frac{1}{\tan A}$]

ASSERTION-REASON BASED QUESTIONS (Q.11- Q.14):

DIRECTIONS: In each of the questions given below, there are two statements marked as Assertion (A) and Reason (R). Mark your answer as per the codes provided below:

- a. Both A and R are true and R is the correct explanation of A.
- b. Both A and R are true but R is not the correct explanation of A.
- c. A is true but R is false.
- d. A is false but R is true.

11. **Assertion (A):** If $x = 2 \sin^2 \theta$ and $y = 2 \cos^2 \theta + 1$ then the value of $x + y = 3$.

Reason (R): For any value of θ , $\sin^2 \theta + \cos^2 \theta = 1$.

(A) a (B) b (C) c (D) d

12. **Assertion (A):** $\sin A$ is the product of sin and A.

Reason (R): The value of $\sin \theta$ increases as θ increases when $0^\circ \leq \theta \leq 90^\circ$.

(A) a (B) b (C) c (D) d

13. **Assertion (A):** $(\cos^4 A - \sin^4 A)$ is equal to $2 \cos^2 A - 1$.

Reason (R): The value of $\cos \theta$ decreases as θ increases when $0^\circ \leq \theta \leq 90^\circ$.

(A) a (B) b (C) c (D) d

14. **Assertion (A):** In a right ΔABC , right-angled at B, if $\tan A = 1$, then $2 \sin A \cdot \cos A = 1$.

Reason (R): cosec A is the abbreviation used for cosecant of angle A.

(A) x (B) 3 (C) x (D) 2

SA-I TYPE:

15. If $\sin(A + B) = \sqrt{3}/2$ and $(A - B) = \frac{1}{2}$, $0 \leq A + B \leq 90^\circ$ and $A > B$, then find A and B.

[Hints : $A + B = 60^\circ$, $A - B = 30^\circ$]

16. Evaluate $3 \cos^2 60^\circ \sec^2 30^\circ - 2 \sin^2 30^\circ \tan^2 60^\circ$.

[Hints : Use standard angle values]

17. Simplify: $\frac{\tan^2 \theta}{1 + \tan^2 \theta} + \frac{\cot^2 \theta}{1 + \cot^2 \theta}$

[Hints : $\cot \theta = \frac{1}{\tan \theta}$]

18. If $7 \sin^2 A + 3 \cos^2 A = 4$, then find $\tan A$ where A is acute angle.

[Hints : Use $\sin^2 A + \cos^2 A = 1$]

19. If $\cos A = \frac{2}{5}$, find the value of $4 + 4 \tan^2 A$.

[Hints : Find $\tan A$]

20. Write the value of $\frac{5}{\cot^2\theta} - \frac{5}{\cos^2\theta}$.

[Hints : Use $\sec^2\theta - \tan^2\theta = 1$]

SA-II TYPE:

21. If $\cosec\theta + \cot\theta = p$, then prove that $\cos\theta = \frac{p^2 - 1}{p^2 + 1}$.

[Hints : Find $\cosec\theta - \cot\theta$. Also find $\cosec\theta$ and $\cot\theta$]

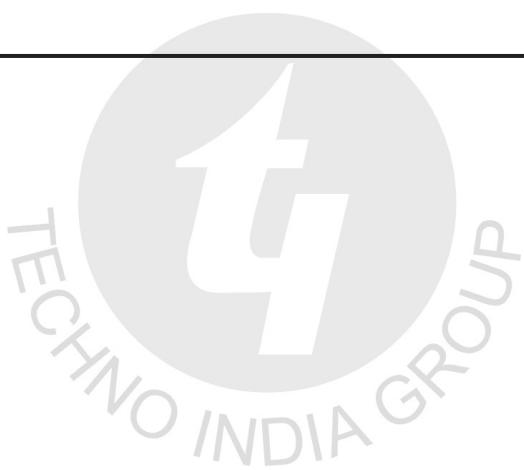
22. Prove that $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \sec\theta + \tan\theta$.

[Hints : Dividing numerator and denominator by $\cos\theta$.

23. If $\sin\theta + \cos\theta = \sqrt{3}$, then prove that $\tan\theta + \cot\theta = 1$.

[Hints : Squaring both sides, find $\sin\theta \cos\theta$]

24. Prove that: $\frac{\cos^2\theta}{1 - \tan\theta} + \frac{\sin^2\theta}{1 - \cot\theta} = 1 + \sin\theta \cos\theta$.


[Hints : Write $\cot\theta$ and $\tan\theta$ in terms $\sin\theta$ and $\cos\theta$]

25. If $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$, show that $\cos\theta - \sin\theta = \sqrt{2}\sin\theta$.

[Hints : Square both sides]

ANSWER

1. (B)
2. (C)
3. (A)
4. (D)
5. (A)
6. (B)
7. (A)
8. (C)
9. (C)
10. (D)
11. (A)
12. (D)
13. (B)
14. (B)
15. $45^\circ, 15^\circ$
16. $\frac{-1}{2}$
17. 1
18. $\frac{1}{\sqrt{3}}$
19. 25
20. -5

